Regression Models for Categorical and Limited Dependent Variables

Availability :
In Stock
₹ 7,573.44 M.R.P.:₹ 9016 You Save: ₹1,442.56  (16.00% OFF)
  (Inclusive of all taxes)
₹ 0.00 Delivery charge
Author: J (John) Scott Long
Publisher: SAGE Publications Inc
Edition: 1st Edition
ISBN-13: 9780803973749
Publishing year: January 1997
No of pages: 328
Weight: 620 grm
Language: English
Book binding: Hardback

Qty :

no information available

A unified treatment of the most useful models for categorical and limited dependent variables (CLDVs) is provided in this book. Throughout, the links among the models are made explicit, and common methods of derivation, interpretation and testing are applied. In addition, the author explains how models relate to linear regression models whenever possible. After a review of the linear regression model and an introduction to maximum likelihood estimation, the book then: covers the logit and probit models for binary outcomes; reviews standard statistical tests associated with maximum likelihood estimation; and considers a variety of measures for assessing the fit of a model. J Scott Long also: extends the binary logit and probit models to ordered outcomes; presents the multinomial and conditioned logit models for nominal outcomes; considers models with censored and truncated dependent variables with a focus on the tobit model; describes models for sample selection bias; presents models for count outcomes by beginning with the Poisson regression model; and compares the models from earlier chapters, discussing the links between these models and others not discussed in the book.